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ON THE CARDINAL POINTS IN PLANE KINEMATICS

By G. C. STEWARD
University College, Hull

(Communicated by L. Bairstow, F.R.S.—Received 15 November 1950— Revised 28 January 1951)
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In the elementary theory of geometrical optics all the non-aberration properties of the symmetrical
optical system may be derived from the three pairs of cardinal points, due to Gauss, of which two
pairs only are independent. And it is the case, in the general theory of plane kinematics, that there
are certain points playing a somewhat similar role. For, associated with any relative co-planar
motion of two planes, there are two enumerable sets of points, from the configuration of either of
) which may be derived all the properties of the relative path of any, and every, point, or series of
<, points, fixed in either plane. The configuration of each of these sets of points is uniquely characteristic
X of the particular relative motion of the two planes, and conversely; and gives a very simple and
compact synthesis of the whole realm of plane kinematics.

The purpose of the following investigation is to establish the existence of these ‘cardinal points’,
as we may name them, in plane kinematics, and to examine some of their properties. In addition,
various new curves and configurations are obtained, relating to the generation of the Burmester points,
and similar points of higher orders; together with a generalization of certain kinematical results which
have emerged, stage by stage, in the writings of Tschebycheff, Burmester, Miiller and others.

THE ROYAL
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1. INTRODUCTION

In a plane collineation there are three self-corresponding points, and, of such collineations,
that one of more immediate importance in plane kinematics—for which lengths are con-
served—has two of these points coincident with the absolute points. The existence of the
third, and real, point implies that a plane may be transferred to any coplanar position by
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20 G. G. STEWARD ON THE

means of a pure rotation; and this has long been familiar. Indeed, it appears to have been
known for a finite displacement before it was recognized for an infinitesimal displacement.
Even earlier, de la Hire (1%706) investigated various properties of roulettes, and to him also
is due the introduction of the inflexion circle.

In the eighteenth century, Watts introduced a simple mechanism designed to generate
approximate straight-line motion, from non-linear motion. And Tschebychef, in a series
of investigations extending over some thirty-four years (1854-1888), discussed the kine-
matical properties of this, and of allied, mechanisms. In particular, as associated with the
three-bar mechanism, he discovered a certain property, afterwards generalized by Miiller
for all mechanisms, and capable of still further generalization, to the effect that, when
contact of a certain order has been obtained, with a straight line, there are then three
collinear points of the mechanism, the paths of two having complete contact with circles,
as guided by the mechanism, and that of the third five-point contact with a third circle. The
first of these four points coincides with the Ball point; for Ball found that, in quite general
co-planar motion, there exists, at each instant, one point, and only one, the path of which
has four-point contact with a straight line.

The writings of Burmester brought into prominence a certain cubic curve of importance
in plane kinematics, and this curve has been the subject of numerous papers. There followed
a long series of investigations, associated with the names of Burmester, Miiller, Grubler,
Rodenberg, Wittenbauer and others. These arose frequently from the study of particular
mechanisms—usually the three-bar mechanism—and from them emerged results of a general
kinematical nature; for example, the existence, in quite general coplanar motion, of four
points—the Burmester points—the path of each of which has five-point contact with a corre-
sponding circle. Further, ifone of these points coincides with the Ball point then the remaining
three are collinear; and it was this latter case, for a particular mechanism, which arose in
the writings of Tschebycheff.

Towards the close of the above-mentioned series of papers emerged a certain chain of
points associated with plane kinematics. For example, the centres of curvature of the
envelopes of all straight lines fixed in a moving plane lie, at any given instant, upon a circle
passing through the instantaneous centre, the opposite end of the diameter of which—the
so-called Riickkehrpol—is a point of interest; as also is the Wendepol, the corresponding point
in the dual motion. And each of these is the first of a chain of points. But some, at least, of
these points appeared in different fashion (Léauté), as the centres of zero acceleration, and
of zero hyper-acceleration, for uniform angular velocity of the moving plane. The points,
however, are of more fundamental importance, in the general theory, than seems to appear
here; save only, as far as I am aware, perhaps in some measure, in the last paper of the series,
by Miller (19o2).

In the elementary theory of geometrical optics all the non-aberration properties of the
general symmetrical system are completely determined by the three pairs of cardinal points,
introduced by Gauss, of which two pairs only are independent. And a main purpose of the
present investigation is to establish the existence of certain cardinal points in plane kinematics,
from knowledge of which, in somewhat similar fashion, may be determined completely all
the properties of the path of any point, or series of points, of either of two planes in relative
coplanar motion. The configuration of these cardinal points is characteristic of the relative
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CARDINAL POINTS IN PLANE KINEMATICS 21

motion, and conversely; and gives a very simple and compact synthesis of the whole realm
of plane kinematics. In addition, various new curves and configurations are obtained,
relating to the generation of the Burmester points, and similar points of higher orders, together
with a generalization of kinematical results which have emerged, stage by stage, in the
writings of Tschebycheff, Burmester, Miller and others.

There is a quite extensive, though somewhat scattered, literature dealing with plane
kinematics, extending over a considerable period. Frequently, several finitely displaced
positions of a plane are considered, and the corresponding geometrical properties are
investigated; then, as a limiting case, the properties arising in consecutive infinesimal
displacements are derived. But mention should also be made of a more recent treatment in
quite different, and I believe quite novel, fashion by Blaschke (1938).

2. THE CARDINAL POINTS OF THE FIRST SET

2-1. We consider two planes p and @, subject to relative coplanar motion, or displacement,
and we assume this relative motion to have one degree of freedom, specified by a parameter
@, as in the usual mechanism, or linkage. We proceed to establish the existence of an enumer-
able set of points &7}, o2, ...,&Z,, ..., having the following characteristic: the relative path
of an arbitrary point P_, fixed in the plane @, has all its properties determined by its geo-
metrical relationship with the set of points &7}, %, ..., &, .... And, further, it is the case that
the configuration of this set of points, for any value of the parameter ¢, determines the
configurations of the set for all values of ¢. This configuration, for a single value of the
parameter ¢, affords therefore a simple and complete synthesis of the generalized relative
motion, or displacement, of the two planes p and @.

There is similarly a dual set of cardinal points &}, %,, ..., &, ..., arising from consideration
of the relative path of an arbitrary point F,, fixed in the plane p; and, clearly, the configuration
of either set determines completely that of the other set. Itis the case that./; and &7] coincide
with the point commonly known as the instantaneous centre; but, in general, 27, and
&,, n>1, do not coincide. And, further, these points are, in general, fixed in neither plane.
Their several loci, in the two planes, form a series of curves intimately related with the
mechanism, or linkage, and, in particular, for » = 1, we have the well-known centrodes,
with their familiar rolling property.

Let Oxy be rectangular axes fixed in a plane p, and Q& similar axes fixed in a super-
imposed plane w; let €, referred to Oxy, be Z(=%+1y), and let ¢ be the inclination of ¢ to
Ox. We regard ¢ as a variable parameter, and Z(¢) as a single-valued function of ¢.

Dually, if O, referred to the axes &7, be {(¢), we have

Z+ et = 0.

We introduce the operators

d=dld¢+i, and 0'=d/dp—i,
reducing respectively, when applied to a quantity independent of ¢, to
do=t and dy=—1i.

We may apply either of these operators n times, writing then, for example, 0%, and reducing
to 02 when applied to a quantity independent of ¢.
3-2
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22 G. C. STEWARD ON THE
Further, we may write the operations of differentiation, with respect to ¢, as
dz|dp =20, d%z[d¢* =Z?, ..., drz/d¢" =z,

2:2, The cardinal points of the first set. Let P be a point z(=x+1y), {(=£+1n), referred to
the two sets of axes respectively, and, in the first place, fixed relative to neither set. Then

z—ziLet, (2:1)
and {={+ze . (2-2)
Differentiating (2-1) n times with respect to ¢, we obtain

20 — Z0) 4 b nf.
If P, denoted now by P_, be fixed in the plane @, we have

Zn =z 4 i 91 {; (2-3)

for a given value of ¢ there is one, and only one, point &Z,(z,,{,) coinciding with a point
P, for which z® = 0, and &7, is given by

0 =ZzM+etdng,. (2-4)
Then, from (2-1), z, =2z—04"zZ",
and, from (2-2), ¢, = o,

so that z, and {, are, in general, functions of ¢.
Further, from (2-3) and (2-4), for the general point P,,

20 = & 9y({—E,) = 05(2—2,),
or zZm = 01 P, (2:5)

a vector relation. And it will be observed that the point &, is fixed neither in @, nor in p;
but, for the value ¢, is coincident with that one point P, for which, relative to p, z® = 0.
Also, from (2-5), for the general point P, corresponding small variations Az and A¢ are

related as follows, Az = 0, A+ 0y (A2 + ...+, (A" + ..., (2-6)

where the g-coefficients are complex, and are given by
nlo, =0t P,.

Corresponding to variation of the parameter ¢, each point P, has a path relative to the
plane p, given by z(g), and all the properties of this path, for given ¢—the direction of the
tangent, the centre of curvature, and the centres of curvature of the successive evolutes—are
completely determined by (2-6); that is to say, these properties are completely determined
by the position of P, relative to the enumerable set of points o7,,.,, ...,.,, .... Or, the
configuration of the points &/, determines the ‘generalized path’, at ¢, of the plane  relative
to the plane p—that is, the particular relative displacement of @ and p; and, conversely, the
configuration of the points 27, is itself completely determined by this relative displacement.

We refer to the points &), 57, ... o, ... as the cardinal points of the first set, of the generalized
displacement of w relative to p.
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CARDINAL POINTS IN PLANE KINEMATICS 23

2-3. In passing, and as a simple example of the use of the cardinal points, we notice that
if the ratio of the first two coeflicients, in the power series (2:6) in Ag, of the preceding
paragraph, be purely real, the point P, is at an inflexion of its path relative to the plane p;
or, P_has three consecutive positions in line, relative to p, and all lines so arising pass through
the point &7,. And then also, since 7,/0, is purely real, P, lies upon the circle having 27, 27,
as diameter; hence the name, circle of inflexions.

If, further, the ratio of the third coefficient to the first, and so also to the second, be purely
real, the path of P has four consecutive positions in line, relative to the plane p. Thisis then
the Ball point B, first indicated by Sir R. Ball, and, from (2-6), it appears here as the foot of
the perpendicular from %7, upon the line 27, .27;. In general, for unrestricted &7, this is the
highest-order contact possible with any straight line fixed in p; but if, in addition, the ratio
73/0, be purely real—implying that 27,27, is perpendicular to %7, &/;,—the Ball point indicates
five consecutive positions in line, relative to p. And each additional higher-order contact
implies that an additional cardinal point &7, lies either upon 7,7, or upon 7,.%7,, and
conversely.

3. THE CARDINAL POINTS OF THE SECOND SET

We have been considering the displacement of the plane w relative to the plane p; but,
clearly, there is a duality, and we may similarly consider the displacement of p relative to @.
We investigate, then, the displacement, relative to @, of a point P, fixed in p.

From (2-2), we have {={+ze (3-1)
for a general point P, fixed in neither plane; whence, differentiating » times with respect to ¢,
(O — To) 4=t §'nz, (3-2)

If now P, denoted by F,, be fixed in p,
(O = (™t e-i¢ gz, (3-3)

and, for a given value of ¢, there is one, and only one, point.<Z, (z,, {,), coinciding with a point
P, for which {® = 0, and &7}, is given by

0= {™+e itz (3:4)
Whence z, =080z and (= {—an{m;
and these results may be compared with those of §2, as following from the dual character
of the relative motion, or displacement. Further, from (3-3) and (3-4), for any point P,

(0 = e #Op(z—2) = Ip(C L),
or {® = ool F,.
Connecting corresponding variations A{ and Ag there is a relation similar to (2+6), namely
AL = 0] Ap+ 0y (AG)2+ ...+ 0L (AP)" + ...,
where the ¢’ coeflicients are complex, and are given by
nl o, = d"of, P,.
And it follows that all the properties, for given ¢, of the path of P,, relative to @, depend

only upon the relation between P, and the enumerable set of points 2|, 7;, ..., ., ..., and
conversely.
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24 G. C. STEWARD ON THE

In particular, there is a dual inflexion circle, upon .o7|.%7, as diameter, and upon this
a dual Ball point B’, the foot of the perpendicular from .27, upon.o/|.Z;.

We have defined, then, a second enumerable set of cardinal points oA\, A, ..., ,, ..., dual
to thefirstset; the configuration of which determines, andisitselfdetermined by, the generalized
displacement of p relative to @.

Moreover, the points.eZ, are, in general, fixed neither in p nor in @.

We have now two enumerable sets of cardinal points, &7, and &, ; but, clearly, either set
determines the other set. Indeed, writing # = 1, it is evident that 27 and /] coincide—at
the point commonly known as the instantaneous centre; but, for n>1, &7, and %7, do not
coincide, in general.

In this way we have analyzed the generalized displacement of either plane, relative to the
other plane, into one or other of two enumerable sets of cardinal points 27, and <7, ; these,

for reference, are given by the following:
L(2nG): 2, =200, =00

n

Az, G): =030z, G = {—0L".

4. THE PATHS OF THE CARDINAL POINTS AND CERTAIN ASSOCIATED CURVES

We are concerned here with the configuration of the cardinal points, and with the derived
points and curves, for a single value of the parameter ¢; but these points, and these curves,
depend upon ¢, and for variation of the parameter they have loci, and envelopes, in each of
the planes w and p. For example, each cardinal point, of each set, has two loci, one in each
plane. As a simple illustration, by differentiation with respect to ¢, we have the equation

i () — () _ H)
e gﬁl ) = Zp T Zp-1>
giving a relation between the two loci of .&Z,. In particular, if n = 1,
i (D — H)-

and «7/,, <] coincide. That is, we have the familiar rolling property of the centrodes. And for
n>1 we have other properties of the ‘centrodes’ of higher orders.

(1 _

Further, we have zZ = 0y(z,4, z,),
_ (1) _

and, for n =1, 20 = 0y(z,—2,),

so that the inflexion circle, and similarly also the dual inflexion circle, touches the centrodes
at o) («/). Moreover, these two circles are of equal radii, since

zy—2z, =2z—2zy and z, =z,
and they touch externally at o7, («71).
Also, if we write ol \ Ay =,y or o= (z2,—2z,)[(z,—2),
and & denote the conjugate of ¢, we have, for the Ball point Z(¢)
Z(¢) = 2+ 3(0+7)(25—2),

and a corresponding expression for the dual Ball point. Each of these points, then, has two
loci, as ¢ varies, giving four Ball lines, dually related in pairs.
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CARDINAL POINTS IN PLANE KINEMATICS 25

Each Ball line appears also as part of the envelope of the corresponding inflexion circle
in the plane considered, the remaining part of the envelope being the corresponding centrode.

Similarly, the Burmester points and their duals, subsequently introduced, have loci in the
two planes—the several Burmester lines, as we may name them; and these loci are parts of the
envelopes of the Burmester cubic curves, introduced later.

5. THE RELATION BETWEEN THE SETS OF CARDINAL POINTS

Each set of cardinal points &7, &7, determines the other set, and, from §3, the relations
between the sets may be expressed in the dual forms
=3 (-u()z and =S ())e
r=1 r r=1 r
Hitherto, the origins and the axes of co-ordinates have been chosen arbitrarily in each plane;
but, since we are interested here in the curves and configurations associated with a single
value of the parameter ¢, we may take O, {2 and &7, to be coincident, without loss of generality
and also write ¢ = 0, o7, 27, being the coincident axes of y and 5. Then the relations between
the co-ordinates of the first few cardinal points, &7,(x,,y,) and &Z,(x,,y,), are given by the
following, which we may note for subsequent use:

x1=0=x1, !/1:0:,7/1:

p— J— 4 j—
Xy = 0 = x,, Y2 = — Yo

Xy = —xy+4%5, Yy = —y,+4y;— 6y,

6. CERTAIN PARTICULAR CONFIGURATIONS OF THE CARDINAL POINTS

In passing, it is of interest to examine briefly the configurations of the cardinal points in
certain particular relative motions of the planes @ and p.

Thus, if the displacement of @, relative to p, be one of pure rotation, that is, if there be
a point P fixed both in @ and also in p, then P may be taken as the base point; and it is
evident that all the cardinal points, of each set, coincide with P.

If a point P_, of w, describe a straight line / in p, then from the formulae of the preceding
paragraphs, it follows that &7,,Z,, ...,o,,, ... lie upon [, and that &}, o, ..., ,,.,, ... lie
upon the line through P_ perpendicular to /. A particular case of this arises if a circle, fixed
in @, roll, without sliding, along a straight line fixed in p; then 7, is at the point of contact,
while &7,,.9;, ..., 5, ... coincide with the centre of the circle. The cardinal points of the
second set lie upon the radius (produced) to the point of contact, being equally spaced along
this line, at distances equal to the radius of the circle. If the radius of this circle tend to zero,
and the motion become one of pure rotation, all the cardinal points, of each set, tend to
coincidence at &7}, the point of contact.

Another case of interest arises when, in addition, a second point P, of @, describes a second
straight line /', in p; then 27, (.271) is given by the intersection of the respective perpendiculars
to/and /', at P, and P, and o7, %, ..., s, 1, ... coincide, while &7, o, ... oZ,,, ... coincide
with the point of intersection of the lines / and /’. The cardinal points of the second set .27, all
lie upon ,.e7; produced, so that &,., = 2"~1e/,./. The displacement of @ relative to
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26 G. CG. STEWARD ON THE

0, in this case, is the so-called elliptical displacement, while that of p relative to @, the dual,
is cardioid displacement.

Other types, for example, conchoidal displacement, may be examined ; but these cases are,
of course, highly specialized, and they give rise to very degenerate forms of many of the
curves and configurations of the succeeding paragraphs.

More generally, let a point P, of @, describe a given curve C, fixed in p; then the cardinal
points are only partially determined, since the relative motion itself is not completely
determined—owing to the unspecified correlation between the parameter ¢ and the curve C.
But, if a second point P,, of w, be constrained to describe a second curve C’, fixed in p, the
cardinal points are completely determined, and their several positions may be found from
knowledge of the two curves C and C’; this involves the analysis and investigation of the
following paragraphs.

In particular, if C and C’ be circles, we are dealing with the important special case of
three-bar displacement, of the plane @ relative to the plane .

7. THE CENTRES OF CURVATURE OF THE PATH AND OF ITS EVOLUTES

In the general case, let P, be a point of @, and let the tangent at P, to its path relative
to p, be inclined at angle ¥ with a line fixed in p. Then, for this point, z may be regarded as
a function either of ¥ or of ¢; and the centre of curvature C(Z) of the path is given by

Z = z+idz|dy = Qz;

where Q=1+1id/dy =10,

and 8 =d|dy—1.

Repeated application of the operator Q gives the centre of curvature, C,(Z,), of the nth
evolute of the path of P, Z, = Qg

and the vector radius of curvature, p,, of the nth evolute, is given by
pn=2(Q=1) z;
so that, p being the radius of curvature of the path of P, we have
P = Q,o, P2 = Do, ooy pp= Qp,
Further, the vector displacement of the centre of curvature of the (n—1)th evolute, from
the nth cardinal point.Z;, of the second set, is given by
oL, C,_y = 0p(0'"—0") z,
taking z(=z) as base point.
If p, = 0, then P, is at a point of stationary curvature of its path relative to p, and such
points, for given ¢, lie upon the curve
Q(Q—1)z=0,
a cubic curve of some importance, which we consider subsequently. ,
These results give the centre of curvature of the path of the general point P,, and of the
successive evolutes of this path, in terms of the configuration of the cardinal points. For they

involve ¢ as a function of ¢, say ¥ = f(#), and the function f(¢), being a property of the path
of P, for given ¢, may be expressed readily in terms of the position of P, relative to the

cardinal points.e/, and.oZ,, n =1,2,3, ....
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CARDINAL POINTS IN PLANE KINEMATICS 27

8. ORTHOGONAL SETS OF CARDINAL POINTS

In passing, we may notice a particular case of interest. If there be a point P, for the
relative path of which ¥ = ¢+ const.,

this relation being differentiable repeatedly, we may take P, as base point, and then the
operators 8’ and ' are identical. The cardinal points &7, of the second set coincide successively
with the centres of curvature of the several evolutes of the path of £,. We remark that this
special case arises when an arbitrary curve, fixed in p, is throughout the displacement
touched by a straight line fixed in @, the point of contact being fixed in the line.

Then /() is the centre of curvature of the relative path of P,, o7, that of the first
evolute, and in general .7, ., that of the nth evolute. Here 7,27, ,, is perpendicular to
Ay, for all values of the positive integer n; and such a set of cardinal points, 2Z,, may
be described as an orthogonal set.

It is the case that if a set of cardinal points be orthogonal, for a single value of the
parameter ¢, the set is orthogonal for all values of ¢. For, from the relations of § 3, defining

these points, we have
PO, 6P =G = 08 (Garp—Cep1)

p being a positive integer. If now, for the value ¢, the set be orthogonal,

GO =G0 = vy (G— G
where v, is real. The line 27,27, ;| remains fixed in direction, therefore, throughout the
displacement, and the set.%/, remains orthogonal.
Orthogonality of one of the sets of cardinal points is characteristic of the type of motion
described above, and conversely.
Clearly orthogonality of one set of cardinal points is incompatible with orthogonality of
the dual set.

9. THE GENERAL CONFIGURATION OF THE CARDINAL POINTS

9-1. In general, the relation of §8 is not satisfied for any point P_; we proceed now, for
quite general displacement of @ relative to p, to find the centres, and the radii, of curvature
of the relative path of P,, and of the successive evolutes, in terms of the configuration of the
cardinal points.

Henceforward, we omit the suffix w in P, since, unless otherwise indicated, we deal only
with a point P, fixed in @.

From §7, the radius of curvature of the path of P—the vector PC—is given by

p = (4/0) 2,
where 0 =dyldp;
or, from (2-5), Op = Pst,.
For the vector radius of curvature, p,, of the nth evolute of this path, we write
G+lp = "w(n) P,
where o(n) is real. We write also  PoZ, = (§,+1y,) P,

and, since from (2-5) Zl%(P&{n) = 1P, |,

Vor. 244. A. 4
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28 G. C. STEWARD ON THE
we have grlz = —Tr1 &M, €70
T = Eni1—E2E0 T 1205

where the prime (") now denotes, temporarily, differentiation with respect to the parameter ¢.
Further, with the axes and notation of §5, we have

£, = 1—(xx,+yy,) /" and 7, = (%,9—y,%)/"

where P =r=+/(x2+y?).
Then, since Pus1 = Qp,
we have 0 =&,
and also the mixed equation
o(n+1) = &0 (n) —{€7;+ (2n4-1) &} 0(n). (9-1)

This latter equation may be written
w(n+1) = 0" (n) +Q(n) w(n) = E,v(n),
where Q(n) +& o+ (2n+1)E, =0, Q(n) = Q(0) —2nk,,

and the operator £, is defined by
E, =¢,dldg+Qn).

Thus, symbolically, we may write the solution of (9-1)

o(n) = 11 £)0(0) = I1 5.1,

v=n—1
since ©(0) = 1. We have also &y = 286,71, — 175

The solution of the mixed equation gives immediately the radius of curvature p, of the nth
evolute of the relative path of the general point P, in terms of the relationship between P and
the cardinal points &7, o2,, ..., o7, ,, of the first set.

9-2. It is evident that, if £, = 0 = #,, that is, if P coincide with the Ball point B, then
o(n) = 0 for all values of n greater than unity; also, if {, = 1, 5, = 0,x>1, then again
w(n) = 0, n>1. The latter case arises if the cardinal points 27, coincide, that is, if we are
dealing with a pure rotation.

Clearly, the function w(n), and also the function w’(n), are polynomials in the various
&5 1,; and, if we regard ., and 7, as of “weight’ 4, then w(n) is throughout of weight 2n
and, in this sense, is homogeneous. Also, each function is linear in the quantity {,,7, of
greatest weight.

2n
Further, we have o(n) =3 (up/ﬂﬁ),
p=1

where %, is homogeneous, and of degree p, both in x, y, and also in the x, y ,; @(n) is, of course,
a pure number.

We write w(n) = r*w(n),
and consider the curves

2n
w(n) =0 or uprZ(Zn—p) =0 (n =1,2,...).
p=1
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CARDINAL POINTS IN PLANE KINEMATICS 29
Each curve, for the appropriate value of n, gives the aggregate of points for which

pﬂ = O'
The curve is circular, of degree 4z — 1, having multiple points of order 2z—1 at the circular
points; and it passes through the first cardinal point &7;, having there a multiple point of
order 2n. Also, for all values of n>>0, it passes through the point given by £, = 0, 75 = 0, that
is, the Ball point, the foot of the perpendicular from 7, upon &7, 2.
The preceding curves correspond to a single value of the parameter ¢; but we notice in

passing, that if w(n+1)=0 and o) =0,

then, in general o' (n) = 0.

The envelope then of the curve w(n) = 0, for varying ¢, is given by the loci of the points of

intersection of the curves win+1) =0 and w(n) = o.

9-3. The curves w(n) = 0 have fixed intersections at the circular points, at the first cardinal
point o7}, and at the Ball point; and, in addition, they have certain ‘free’ intersections,
depending upon the configuration of the cardinal points. In particular, interest centres in
the free intersections of the curves

w(n) =0 and w(1l) =0;
more particularly still, in the possibility of coincidences between the sets of intersections
with w(1) = 0, for the several values of n. For example, such coincidences arise, for all values
of n, in the important special case of three-bar displacement.

A single free intersection, common to all the curves w(n) = 0, implies some limitation
upon the set of cardinal points, and the addition of a second free intersection, common to all
these curves, implies that the configuration of the cardinal points is completely determined ;
we are dealing then with three-bar displacement of the plane w, relative to the plane p.

For unrestricted 27, we have

w(0) =1,
o(1) = 13— 38&,1,,
0(2) = 30%(1) +68,7,0(1) (8, — 4,5+ 383+ 3E,75),
0(8) = 150%(1) + 608, 7,02(1) + E5( 10E,— 308,£, + 118} + T5E,73) 0(1)
+E5(— 715+ 58214+ 10,8, — 308,755+ 308, 73),

....................................................................................

In the sequel, we shall be interested more especially in the aggregate of points P for which
p=0, thatis, o(l)=0.
Such points lie upon a certain cubic curve, and, for these points, the mixed equation (9-1)
takes the form E5to(n-+1) = o' (1) + 2u7,0(n),
and then, in particular, we have

£ '0(2) = &, — 48,83+ 38, (85 +13),
£5%0(3) = —n5+ 58y my+ 10847, — 308, 75(E5—13),

............................................................
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30 G. C. STEWARD ON THE

An important special case arises if p==0, p, = 0, and, in addition, p, = 0 = p; = ... = p,;;
for then the relative path of P has contact of order n-+ 3 with its circle of curvature. This was
investigated, at some length, by Tschebycheff for small values of n. Here we have, from §9-2,

w'(l)=0=0(2) =... =0 (n+1),

and these relations imply some limitation upon the configuration of the cardinal points.

For then
g2_ 1773 = 37723

£5 16 = 463 —3(E3+73),
€515 = 5114+ 1077,(&;— 3E3),

....................................

That is, the cardinal points 75, o, ..., &, ,, of the first set, are restricted alternately to lines
parallel to, and perpendicular to, the line Po?,.

10. THE RUCKKEHRPOLE AND THE WENDEPOLE

Hitherto, we have regarded the plane @ as an aggregate of points P,, and similarly for the
plane p. But, instead, we may regard w as an aggregate of lines /, fixed in w; and, in the
displacement corresponding to a change in the parameter ¢, each such line has an envelope
in the plane p. )

Let ¢ and ¢, be the perpendiculars, from O and € respectively, upon a line /_, so that
q(4) is a function of ¢, and let « and «, be their inclinations to Ox and ; then

and ¢, is independent of ¢. The equation of /_, referred to the axes Oxy, may be written
l,=xcosa+ysina—q = 0.
The point of contact, Z (¢), of this line, with its envelope, for varying values of ¢, is given by
2(g) — c*d,0'g,
which, in general, is fixed in neither plane. Hence, the centre of curvature, Z(¢), of this
envelope 15 given bY Z(¢) _ ei“aga/Dq,
and the centre of curvature, Z,(¢), of the nth evolute of the envelope, by

Zn(¢) — ez’aag+2a’Dn+lq,
where D = d/dg.
If now Z(¢) be the conjugate of Z(4), we have

2q = e~z f-¢l*Z +qu,
and if, further, &7, (2,) be the conjugate of<Z,(z,), so that
Z =002,

while, as previously, z, = 020"z,
it follows, from the preceding, that

2Z(¢) = z1+2z,—e¥* (51— 4,), (10-1)
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CARDINAL POINTS IN PLANE KINEMATICS 31
and, more generally, that
2Z,(4) = Zpi1+2Zpra€%%(Z0 11— 20 42)s (10-2)
according as z is odd, or even.

It is evident that the envelopes of lines of w, parallel to [, are themselves parallel curves,
and, at corresponding points, have coincident centres of curvature, and also coincident
centres of curvature for the several evolutes. Further, varying a for given ¢ we may
consider the centres of curvature of the envelopes, and of their evolutes, of all lines of @ ; and,
from (10-1), all centres of curvature, of such envelopes, for given ¢ and varying «, lie upon
the circle having o7|.27, as diameter. More generally, from (10-2), the centres of curvature
of all the nth evolutes lie upon the circle having &7, | &7, ,, as diameter. And it follows that
the normals to the envelopes, and to the successive evolutes, pass respectively through the
cardinal points.&/},&7,, ..., ... of the second set.

There are clearly dual properties, involving similarly the cardinal points.oZ, of the first
set, and the envelopes, in @, of lines fixed in p.

*Itis evident that the cardinal points &7, and &7, coincide respectively with the Riickehrpole
and the Wendepole of earlier German writers; but these cardinal points play a more funda-
mental role in plane kinematics than is indicated by this property.

11. THE CIRCLES OF INFLEXION AND THE BALL POINTS

The tangent to the relative path of a quite general point P is determined by the first
cardinal point 7}, being perpendicular to &7, P; the radius of curvature of the path by the
addition of the second cardinal point 7, that of the first evolute by the further addition of
the third cardinal point 27;, and so on indefinitely. And we may verify, quite readily, that
if there be a point P, for the path of which ¢ = ¥+ const., this relation being differentiable
repeatedly, the cardinal points.eZ;, of the second set, form an orthogonal system.

Further, itis evident that, if, = 0, that s, if Plies upon the circle having 27,27, as diameter,
the corresponding path curvature is, in general, zero; hence the name circle of inflexions. Or,
the point P has (at least) three consecutive positions in line, relative to the plane p, and all
lines so arising pass through «7,. The point #Z,, upon the circle &, = 0, is a singular point of
the function p, the radius of curvature of the path.

If, in addition, P lies upon the line 7,27, then 5, = 0, so that P lies also upon the curve
w(1) = 0, the aggregate of points for which p;, = 0; and P coincides with the Ball point B,
having four consecutive positions in line. The Ball point arises then as the second intersection
of the line 7, o7, with the inflexion circle; or as the foot of the perpendicular from 7, upon
o, oZ5. And it gives, for the quite general relative motion, the closest approximation to
straight-line displacement, of all points P_, fixed in @.

If; as a special case, the Ball point has five consecutive positions in line, some limitation
upon the position of the fourth cardinal point %7, is implied; for then, from the preceding

* The points o7, and 273 have also been obtained (Léauté) as the limiting position of the acceleration
centre, and of the first hypercentre, as the relative angular acceleration of the two planes tends to zero;
and, in fact, the remaining points 7,, &7, ... can be derived in like fashion. And dually also the points 7.
But these points, and their duals, are intrinsically properties of the ‘ generalized path’ of w relative to p, and

not of any particular motion in this path. And, in any case, their role is more fundamental than is indicated
by this property.
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32 G. C. STEWARD ON THE

paragraphs, {, = 0, so that 2,27, is perpendicular to 7, .%7,. And, as in §2-3, we may proceed,
in like manner, to show that each successive higher order contact of the path of B with
astraight line of p implies that an additional cardinal point, &7, of the first set, lies alternately
upon one or other of the lines <7, o7;, o7, oZ,.

There is evidently a dual inflexion circle, upon 7] .27, as diameter, and upon this a dual
Ball point B’, the foot of the perpendicular from 7, upon 27|%;. And the two inflexion circles
are of equal radii, and touch externally at o7, (</1).

12. THE BALL POINT AS A SINGULAR POINT OF THE FUNCTIONS p,

The radius of curvature p, (n>1), of the nth evolute is a function of position, having
singularities at the first cardinal point 7|, and at the Ball point B. For we have written

g1p, — ito(n) P,
and we have considered the curves w(n) = 0,

of weight 2n, for the general point of which, excluding 7, and B, we have

p, = 0.
The Ball point lies both upon the curve w(n) = 0, and also upon the inflexion circle £, = 0;
so that for this point p, is undetermined. We may examine the values of p, in the neighbour-
hood of B; this function of position behaves variously as P tends to the point B, according to
the path followed.

We may consider, for example, the special case » = 1, and write | BP| = R, so that as
P— B we have R—0.

If P— B along a general straight line then R?p, —a finite limit, and, in particular, if the
line coincide with o7, .%Z;, the limit is 3.7, B..o7, B2 If the line be the tangent at B to the
curve w(1) = 0, then Rp, — a finite limit, while if it be the tangent at B to the inflexion circle
R5p, — a finite limit.

On the inflexion circle, in general, 1/p;, = 0, and on the curve w1, = 0 we have p; = 0, in
general ; while, if P— B along a certain conic touching w(1) = 0 at B, then p, — a finite limit.

13. TeE BURMESTER CQUBIC

A point P, for the relative path of which the radius of curvature p,, of the first evolute,
vanishes, has stationary path curvature; that is, the relative path at P has four-point contact
with its circle of curvature. From §§9-1, 9-3, such points are given by

0-2(0-1y,—39,) Poly = 0.
Upon an arbitrary straight line through 7|, the quantities 5,P.o?|, 7, P2/, are constants,
being the perpendicular distances, from this line, of the cardinal points ., and 27, respectively;
the preceding relation, therefore, determines three points ¢,, 0,, 05 upon this line, of which
two coincide at.2Z;. The aggregate of all such points, for all lines through .27}, is then a rational
cubic curve, having a node at .27, the tangents there being &7, %, and a perpendicular line.
And these tangents form rectangular natural axes to the system.
We have the curve w(1) = u, 7+ us,

in the notation of §9-2, where

Uy = ysx—x3y and wu, = 3y, xy.
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CARDINAL POINTS IN PLANE KINEMATICS 33

If, then, we write Syio=y3—3y, =y3, Byif-+x3=0, x5=xs,
the equation becomes I'=(ax+fy) (x2+y?) +xy = 0,

&/, being the origin of co-ordinates, and &7, &, the y-axis.

The curve I'is a circular cubic, having a node, with perpendicular tangents, at the origin
£/, ; that is, the curve is a strophoid. And, in this connexion, it first appeared, I believe, in
the writings of Burmester.

There are various derivations of the rational cubic curve in a plane but, as related to the
present investigation, and as showing the genesis of the curve from the first three cardinal
points, we may note the following. '

Let any line parallel to &7, %, intersect the inflexion circle in p, ¢, and the line 27,2/,
in r; let &7, p, o, q intersect the line through r, parallel to &/,7;, in P, Q. Then P, Q lie upon
the Burmester cubic.

Or, let (D), (E£) be related ranges upon the lines &7, %, 2,57, respectively, such that
o, ,, D,, correspond to.,, &5, 00, where 2D, o, = 2,2/, ; then the foot of the perpendicular
from D, upon the line E.5Z}, lies upon the Burmester cubic.

The curve is determined by the first three cardinal points alone; but there are many
(o) sets of these cardinal points giving the same cubic curve. Indeed, 7, being given, and

&, lying upon the parabola (ax+By)?+ 3fx — 0,
a suitable point .27, can always be found, upon the fixed line &7, o7,, the line &, 2; enveloping

the parabola 3(ax+fy)*+28x — 0;

the axes of these parabolas are parallel to the single real asymptote of the cubic I
It is convenient to change from 6 to ¢ as the parameter of the general point upon I', where

e—a' +(a'—a)f =0,

and «' is derived from the cardinal points .o7,,.o7;, of the second set, as « is derived from

JZ{,cQ/;th ti 5 19 s ’ ’ ’
2 HFs; That 8 3ys’d =y3—3y, =ys f =p.

Then the curve is given parametrically by

X —F = yle = ¢/(e—a) (¢ +57).

The Ball point, indicating stationary path curvature, is given by ¢ = o/, the single real
point atinfinity, the circular points, and the node, by ¢ = a, €24 /% = 0, ¢ = 0, 00, respectively.
Further, the conditions that three points ¢, ¢,,¢; should be collinear, that four points
€, €5, €3, €4 Should be concyclic, that six points ¢, €,, €5, €4, €5, €5 should lie upon a conic, are

respectively’ 9 909 904
€16265 = offi®,  €16,656, = a?F%,  €16,65646565 = AF*.

The curve, being circular, has a double focus F'; this point is upon the curve, and of

parameter given by ¢+« = 0. It plays some part in the subsequent theory. There are also
two other foci F, F,, the four points of contact of the corresponding tangents from the circular

points being given by ¢ — & (Lizf)!
Or, the foci F, F), F, are given by

| 2Z(atif) = 1, iZ{Jak J(iB)) — 1,
respectively.
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34 G. C. STEWARD ON THE

The cubic intersects the real asymptote in the point H(¢), given by ae = £2, and the line
HF, the satellite of the line infinity, touches the curve at the double focus F.

We notice, in passing, as of use in a cognate investigation, that if the third cardinal point
£/, be allowed to move upon a fixed line /, then we have a pencil of cubics, through a fixed
point @, where o7, @ is parallel to the line /.

14. THE DUAL CUBIC

We may consider the centre of curvature C of the relative path of the general point P, fixed

in the pl ; th
in the plane @; then £,PC — P,
and we write, temporarily, Cot, = (&,+17,) CH,,
since 27, and &/| coincide.
Then, from §5, oAyl =254, , and oA;A; = 34,5,

so that we have the vector relations

oA yC+CP- Pst, = 2(of, P+ Pst,),

and A 3C+ CP+Pst, = 3(o4, P+ Pst,).
The former of these relations gives E4E,— 1,
o (14-1)
and EaT1s = &7l
and the latter gives ~ ~
Eo85+ 8283+ 386, =1, } (14:2)
and €73 +Eam5 = 357

Then, if p, be the radius of curvature of the first evolute of the path, relative to @, of the
point C,, fixed in the plane p and instantaneously coincident with C, and, as previously,
p, be the similar quantity for the relative path of the point P, fixed in the plane @, we have,

from §9-1, 30, = iw,(1) CMI’} (14-3)
and &py = (1) Py,

where, from §9-3, (1) = 73— 38,72,

and (1) = 75— 38,75.

Using now the relations (14-1) and (14-2), we have

| Esp, Pty = E3p, Cot),
and, since Csly = CP+Pst) = (—1[E,+1) Pot| = —&, Pt [E,,
we may substitute in (14-3) to obtain  &3p, = &3p,.

When P lies upon the Burmester cubic, p; = 0, and then, in general, p; = 0; so that C lies
upon a dual cubic I", derived from the cardinal points 7;,.27;, o7, of the second set, precisely
as the Burmester cubic is derived from the cardinal points .27}, 2Z,, 27, of the first set.

We have then, as the curve upon which C lies, a dual circular cubic I, with a right-
angled node at.oZ{(#,), the tangents there being the same as those to I. Further, we may
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CARDINAL POINTS IN PLANE KINEMATICS 35

regard P and C as corresponding points, upon the dual cubics, the relationship being reciprocal;
so that P coincides with the centre of curvature of the relative path of C,. The parametric

equation of IV is x| —f = yle = ¢/(e—a') (2L 52),

I"=(a'x+fy) (x2+y%) +xy = 0,
the parameters of corresponding points being equal. In particular, we notice that the Ball
point upon either curve corresponds to the real point at infinity upon the other curve.

In certain special cases, the Burmester cubic breaks up ; for example, if &7}, 7,,; be
collinear, as in several of the particular cases of §6, then f = 0, and the cubic breaks up
into the line &7, o7, together with a circle, touching the inflexion circle at &7;. And similarly
for the dual cubic. '

and the Cartesian equation

15. THE BURMESTER POINTS

15-1. For each point upon the Burmester cubic we have p, = 0, so that the corresponding
path has four-point contact with its circle of curvature. If, in addition, p, = 0, the path has
five-point contact with its circle of curvature ; and, in general, apart, that is to say, from some
limitation upon the position of the fifth cardinal point.e;, this is the highest order contact
possible, for any point P, with its corresponding circle of curvature. Following Miiller we
refer to such a point as a Burmester point.

Clearly these points arise, in general, from the intersections of the curves w(2) = 0 and
w(l) = 0, of §9-2. But we may deal with the matter in more general fashion by considering
the intersections of the curves w(n) = 0 and w(1) = 0. These intersections cluster at the
multiple point &7, at the absolute points, and at the Ball point; but there are, in addition,
certain ‘free’ intersections, the positions of which depend upon the configuration of the
cardinal points.

The curve w(n) = 0 depends upon all the cardinal points up to, and including, &7, .,
and, further, depends linearly upon the co-ordinates of &7, ,,. If then the cardinal points
A\, Ay, ..., 5, be regarded as assigned, the free intersections of the two curves appear as
a linear series of sets of points, of freedom two, upon the cubic w(1) = 0. It follows that two
of these intersections may be assigned arbitrarily, the cardinal point 7, , being thereby
determined ; and a particularly convenient determination arises if two of the free intersections
coincide with the absolute points.

We may determine, then, a set of points F,, F;, ..., F, o, ..., such that, if &7, coincide with
F, two of the free intersections of w(2) = 0 and w(1) = 0 coincide with the absolute points,
and then, &7, being at F,, and &Z; at F;, two of the free intersections of w(3) = 0 and w(1) = 0
coincide with the absolute points; and so on, step by step. Further, we may take the points
F,F;,...,F, ,, ... as new origins of co-ordinates for the several cardinal points, and the
various equations, in the parameter ¢, giving the several sets of free intersections, for varying
values of n, take a particularly simple form.

Returning to the case n = 2, and writing 62442 = 0 in §9-3, we find that F,(X,,Y,) is

given by (& —a)® X, +6(a+ 32) = 0,
(@ —a)3Y,— (a+3a")2+2a" (o' +a) + 1262 = 0;
and then, writing (0 —a)3(x,—Xy) = 38, (¢/—a)(y,—Y,) = 3,

Vour. 244. A. 5
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36 G. C. STEWARD ON THE

and using §,7 as new co-ordinates for &7, relative to F,, we find, from §9-3, that the free
intersections of w(2) = 0 and w(1) = 0 are given by the quartic equation

O(e; &)= (e+a) (e+') (44%) +e(ne—pE) = 0. (15:1)

There are then four Burmester points, given by the preceding quartic equation, which we
regard as the canonical form of the Burmester quartic.

Here £, 7 are proportional both to the co-ordinates of the fourth cardinal point .27, of the
first set, relative to the point F,(X,,Y,), and also to the co-ordinates of .27} of the second set,
relative to the dual point F; (X}, ¥;); the axes in each case being parallel to the former axes.
For, by the interchange of ' and a, we may write, since f’ = f,

(a—a')® (xg—Xy) = 8, (a—0')® (ys—Y}) = 3,
where (a—a')3 X;-+6f(c’ +3a) = 0,
(o' —a)3 Y, — (&' +30)2+ 20’ +a) + 1262 = 0.

Thus the equation (15-1) serves to deal both with the Burmester points upon the cubic
curve, and also with their duals upon the dual cubic, that is, with the points of the plane
p, for which the path, relative to @, has five-point contact with the corresponding circles of
curvature. And the symmetry of the Burmester quartic ®, in « and «’, indicates that these
points and their duals correspond, in the sense of §14; indeed, if p, and p, be respectively
the radii of curvature of the second evolutes of the relative paths, at corresponding points ¢,
upon the dual curves I" and I, we have

(=) pyt (=), = 0.

Thus, if for given ¢, either of p,, g, vanish, then the other, in general, vanishes too.

15-2. The first three cardinal points &7,, %,, %5 being given, and therefore also the Bur-
mester cubic, the four Burmester points are determined by the fourth cardinal point .2;, and,
for varying positions of &7, these Burmester points constitute a linear series of sets of points,
of freedom two, upon the cubic curve.

Further, if one Burmester point %8, (¢,) be assigned, then 27, lies upon the line /;, given by

[,=0(¢y; x,y) =0,

referred to F, as origin; and if, in addition, a second Burmester point B,(e,) be assigned,
&7, is determined as the intersection of /; with a second line /,, given by

ly=O(e,3 #,y) — 0.

Or, corresponding to an assigned position of .%Z,, there are four lines /, (n = 1, 2, 3, 4), each
passing through »7,, and given by
lnE®(6n> x>y) =0;

and further, each line /, is perpendicular to the join of the first cardinal point .7, and the
corresponding Burmester point. If then 27, be assigned arbitrarily, and if any of the lines
l,, passing through 7, be known, the corresponding Burmester point is thereby determined—
as the single remaining intersection, with the cubic I', of the perpendicular from .27, the

node of I".
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CARDINAL POINTS IN PLANE KINEMATICS 37

16. MULLER’S THEOREM

If one of the Burmester points coincide with the Ball point «’, then, from the Burmester
dnartie (6-+0) (e-') (62-+4) +-e(n6—E) = 0,
it is evident that the parameters of the remaining three points satisfy the relation

616563 = afi?;
that is, these three Burmester points are collinear. This quite general result appeared,
I believe, in the writings of Muller, but, for a particular mechanism, it was given earlier by
Tschebycheff.

The result is a special case of a more general property. We have seen that, upon the
Burmester cubic, the four Burmester points constitute one set of a linear series of sets of points,
of freedom two, corresponding to the arbitrary ;. If now 7, be restricted to a line /,, so that
one Burmester point ¢, is determined, the remaining three constitute a linear series of
freedom one. Each set defines a circle, passing through the three points, and we may show
that the aggregate of these circles constitutes a coaxal system, with real points of intersection,
if ¢, be real. Indeed, ¢, being assigned arbitrarily, the circle through ¢,, ¢,, ¢; intersects the
Burmester cubic again in the point ¢, given by «’e = ag,; that is, in a fixed point.

We may consider the aggregate of conics through three fixed points—the point ¢ and the
circular points—upon the rational cubic curve, and intersecting the curve again in the
remaining three Burmester points, which form a linear series of sets, of freedom one. From
the quartic ® == 0, such a conic system is a pencil of conics, in this case a system of coaxal
circles. If now ¢, = o, the parameter of the Ball point, so that the line /, coincides with
o, B, then ¢ = a, the real point at infinity upon the Burmester cubic, and the coaxal circles
become the line infinity, together with a pencil of straight lines, passing through a fixed point.

Analytically, we may write

V(E)=(E—e,) (E—ey) (E—ey),
so that o=e,+e,+e;=—a—a —a'¢/a and oy=e .65 = a?f?/e,
and are constants. Then o,(=¢,6;+ €56, +¢, 6,) may be taken as the single variable of the sets
of three points, or of the system of circles. And the equation of the circle through the points
€1, €9, €3 May be written
P(2) (e—a) (*+y%) +{(a—e) o5 +e(ar,—oy) x+a?f{(0) —2a+€) y —1} = 0,
a linear function of the single variable ¢,; the circles forming a coaxal system.

If now, as a special case, ¢, = o/, the Ball point, so that ¢ = a, the real point at infinity
upon the cubic curve, the circles break up into the line infinity, together with

(B—0y/p) x-+2(a+0a")y+1 =0,
that is, for varying ¢, a pencil of straight lines through the point @, upon 7, .%,, given by
2(a+a’) o Q+1 = 0. (16-1)

Thus if one Burmester point coincide with the Ball point, the remaining three are collinear,
and all lines so arising pass through the fixed point @ upon .27, o7,. Moreover, we notice that
the equation (16-1) is symmetrical in o and «’, so that the same point  arises in the dual
configuration; and this point @ plays some part in the subsequent theory.

5-2
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38 G. G. STEWARD ON THE

17. GENERATING CURVES FOR THE BURMESTER POINTS
17-1. Through an arbitrary 7, pass four lines /,, [, [5, [,, where
Ue)=0(e; x,9) = 0,
and we substitute successively the parameters ¢, €,, €5, €4, of the four corresponding Burmester
points. The origin of co-ordinates is the point F, of §15-1, and we may use the same equation
for the dual configuration, and origin of co-ordinates being then the dual point F.

For varying positions of &7, these four lines have as envelope a curve of class four; and if
the quartic in ¢ have two coincident roots, .7, lies upon this envelope, which is given therefore
by the vanishing of the discriminant of the quartic equation. This discriminant is of degree
six in the coefficients of the quartic, but here the only variable coeflicients—which are
linear—are those of the terms in ¢ and ¢2; we have therefore, in general, a quintic curve.
And this quintic may be regarded as a generating curve for the Burmester points; for the
tangents to it from .7, arbitrarily assigned, give the four corresponding Burmester points,
as indicated in §15-2.

The quintic curve 2 appears as the envelope of the line

efx—e’y—(e+a) (e-+a) (2447 = 0,
for varying e; so that if 4, v, w be line co-ordinates, the tangential equation of the curve may
be written 2= (ou—p) (a'u—pv) (W +0v?) —uPvw = 0, (17-1)
which is symmetrical in « and a’. Or, parametrically, we have
fex+2(et—a'af?) + (o' +a) e(e2—f2) = 0,
€2y 4 3et+2(o' +a) 3+ (a4 f2) 2 —a'af? = 0,

the origin of co-ordinates being the point ¥, of §15-1. We have then a rational quintic curve.

The curve touches the line at infinity at two distinct points, the one ¢ = 0, being an ordinary
point of contact, and the other 1/¢ = 0, a point of inflexion. The line infinity is then a double
bitangent, and this gives the five points of the curve upon that line. Thus, of the four real
foci of this curve, of class four, one only is in the finite part of the plane, the remaining three
being the points of contact with the line infinity. And, from (17-1), the one real and finite
focus is the origin of co-ordinates, the point F, of §15-1 or, for the dual quintic, the point Fj.

The cubic which touches the eight non-isotropic tangents, from the four real foci of this
curve of class four, reduces, in this case, to a point-pair upon the line infinity, being the two
points of intersection, with this line, of the two non-isotropic, and real, tangents I, 7, I/, 1"
to the curve, from the single finite focus 7.

The curve has four cusps, given by

3et+ (o' +a) S +a'af? = 0,
corresponding to the four positions, on the Burmester cubic, at each of which, by suitable
choice of &7, three Burmester points coincide. And there are two double points,
2= (ata) (F£J(a)), y= (a+a)?/4—{f4 J(aa')}?
the parameters of which are given respectively by
2624 (a+a') eF 26 . /(aa”) = 0,

corresponding to the two cases in each of which, with suitable choice of &7, there are two
pairs of coincident Burmester points.
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Further, there is a double bitangent—the line infinity—and one inflexion, also at infinity,
the deficiency of the curve being zero, as already apparent.

If o7, coincides with the origin F, or.sZ; with F;, the Burmester quartic reduces to

(e+a) (e+a') (&2-+5%) = 0,

so that one Burmester point falls at each of the circular points, the remaining two being real
points, the one coinciding with the double focus —a on the cubic and the other, —a', with
the point on that curve corresponding, in the sense of §14, to the double focus upon the
dual cubic.

17-2. The rational quintic 2, like the Burmester cubic I', depends only upon the first three
cardinal points &7, o7,, o, but unlike I', corresponds to one set only of these cardinal points.

Further, we have seen that an arbitrary &/,—/,, o, o,;, and therefore the cubic I', and
the quintic 2, being given—determines a single set of four Burmester points upon the
Burmester cubic; and the correspondence may be regarded as follows. The point .27,
determines four lines /,, /,, /5, [,, tangents from 7, to 2 ; and the four Burmester points appear
as the four remaining single intersections, with the cubic, of the four perpendiculars from
<7, upon these lines respectively.

Or again; let D(x,y) be the foot of the perpendicular from the origin F, the single real and
finite focus of 2, upon the line [(¢), a tangent to 2. Then we have

ex = fe+a) (e+a'), y=—(c+a) (e+a),
so that D lies upon a rational cubic curve, the pedal of the quintic 2, the equation of which
may be written X2y + (ax —fy) ('x—pPy) = 0, (17-2)

symmetrical in @, ', and having a node at F}, the normals there being F, T, F, 7", the two
real tangents to 2 from Fj,.

Now, the circle on F,2Z, as diameter, 27, being arbitrary, intersects this cubic in two points,
coincident at F}, and in four ‘free’ points (D) ; the lines &, D being the four tangents to 2.
Or, the lines F, D are parallel to the four lines &7, B,, %, B,, | B3, o, B,, where B,, B,, B;, B,
are the four Burmester points corresponding to the arbitrary o7,. The rational cubic (17-2)
may also be regarded, therefore, as a generating curve for the Burmester points.

17-3. The line /(¢), a tangent to the rational quintic 2, corresponding to the arbitrary
point ¢ upon the Burmester cubic, does not, in general, pass through this point; we may seek
the special cases for which the point ¢ lies upon the line /(¢). And that there are seven such
points appear from the following consideration. To an arbitrary point P(¢), upon the cubic
I', corresponds one line /(¢), having three intersections @, @,, @; with I'; and to one such
point @ there are four lines, through @, tangents to 2, and so four corresponding points P,
upon I'. Hence, between P and @ is a (4, 3) correspondence, and so seven united points, for
each of which P(e) lies upon the line /(¢).

If, in §17-1, we make the appropriate substitutions, we have, as the necessary condition

(e—a) (> +52)fle) = O,
where Sfle)=e*{B(e+a’)2—4(a"?+a'a+a?)}+3%(5e—a) (e—at).

Thus the Ball point &’ is one such point; and therefore the line 7, B, that is, the per-
pendicular from 27, upon &7, %, is a tangent to the quintic curve 2. The circular points also
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40 G. G. STEWARD ON THE

satisfy the condition, the fourth cardinal point 7, coinciding then with the single finite focus
F, of 2.

The remaining four points, given by f(¢) = 0, are concyclic, since the product of their
parameters is %42, and they lie upon the circle

(0 —a)? (x2+y?) +12fx—6(a’ +a) y—3 = 0,
where, now, &7 is the origin of co-ordinates. This equation is symmetrical in « and «’, so that
the same circle arises in the dual configuration. Thus, this circle intersects the dual cubics
I" and IV in twelve points, each of which lies upon the corresponding tangent to 2, or 2.

Further, the centre of the circle, referred to 7, as origin, is given by the vector sum of
o, ofy and o7, .o/5, and is coincident with the mid-point of F, F}.

18. SOME DEGENERATE CASES

Certain special cases of interest arise, for particular values of the constants «,« and /.
Thus, if # = 0 the first three cardinal points, of each set, all lie upon the same line; as, for
example, in the cardioid displacement of §6. Or again, if 4o’ = 0, the two sets of the first
three cardinal points are symmetrical about the line through .« perpendicular to .7,.27,.

In the former case, f = 0, the curve 2 reduces to

woa! (u?+v%) —vw} = 0,

that is, to a coincident point-pair upon the line infinity, in the direction perpendicular to
&/, o4, together with the parabola
x% = doo’ (y+aa’),

the focus of which is at F,, and the axis parallel to 7, 27,. Then the rational cubic curve of
§17-2 reduces to 2 (y+aa’) = 0;

that is, the line through F, parallel to .&7,.%7,, taken twice, together with the tangent at the
vertex of the parabola. We have then the familiar pedal property of the parabola, the focus
being the pole.

Also, the Burmester cubic reduces to the line .27, o7,, together with a circle through 27,
the centre of which is upon .o, .7,; so that of the four Burmester points two are always co-
incident, upon .27, .%7,, and the remaining two lie upon the circle, being themselves coincident
if o7, lies upon the parabola.

19. T BURMESTER POINTS AS GENERATED BY A LINE AND A CONIC

19:-1. The set of Burmester points on the Burmester cubic, corresponding to an assigned
position of the fourth cardinal point £Z,(£, ), is given by the Burmester quartic

O(e; & 1) =(e-+a) (e+a') (452 +e(en—F5) = 0,
and, from § 13, any conic passing through these four points intersects the cubic in two further
points P’'(¢') and P"(¢"), such that ¢’¢"a’ = af?; that is, P’, P” are collinear with the Ball point
«’. Or, each set of Burmester points is coresidual with the Ball point.

We write ¢’ +¢” = fA/a’, so that A may be taken as the parameter of the line P'P”, passing
through the Ball point. Then, corresponding to an assigned value of 4, we may consider the
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CARDINAL POINTS IN PLANE KINEMATICS 41

system of conics passing through P’ and P”, and intersecting the Burmester cubic in sets of
Burmester points. Such a system is a conic net N(A), depending upon 4, and given by
N4 &) =M+f"=0,
where SEEAtafat S F=EA+af 4,
and Si=2% fo=xy, [fy=—20( +a) (#+y7) —a'x—py,
A =—FE+y") + (@ —a)wy—z, fy =oax’+fy?,
f1 =2(a'+a) (e’ +42) (x2+y?) +f(3a" +a) x+a' (¢ 4 3a) y+a'.
For assigned .«Z, (£, ) and varying A, the system is a conic pencil, and, in particular, if§ = 0 = 7,
a system of coaxal circles.

Each pair of conics of the net N(1), corresponding to an assigned value of A, has the line
P'P" as a common chord, the remaining common chords, for all pairs of conics, having
a point in common, the point @, of §16, upon 7,%%,, where 2(a'+a) %7, Q+1 = 0. This
point @, therefore, is independent of the A-line chosen, and also plays the same role in the
dual configuration, its co-ordinates being symmetrical in @ and o’

With regard to P’ and P” as absolute points, the conics of the net N are circles’ of which
@ is the radical centre. '

In general, there is a cubic curve U(Q) of which N(2) is the polar net. The sets of Burmester
points may be regarded, therefore, as generated by this cubic U(A), being given by the
residual intersections with the Burmester cubic, other than P’ and P”, of the polar net of
U(1). Also, U(A) depends only upon A and the first three cardinal points.

Further, the cubic U(1) consists of the line P'P”, together with a conic touching QP and
QP" at P’ and P" respectively. Similarly, the Jacobian J(1), of the net N(A), that is, the
Hessian of the cubic U(1), consists of the line P’'P”, together with a second conic, touching
QP and QP” at P’ and P” respectively.

To an assigned Z,(£, 7) corresponds one set of Burmester points, and so one conic of the
net N(1), A being assigned ; and there is one point X, Y, the pole of this conic with respect to
the cubic U(1), and conversely. Thus the pole X, Yisin (1, 1) correspondence with the point
o,(&,7), the correspondence depending upon the arbitrary parameter A. So that we have
a collineation between &, 7 and X, Y given by X(4; &, 1), Y(1; &, 7).

We may gather together the preceding results as follows: to an arbitrarily assigned
oZ,(€,m) corresponds one point X, Y, the polar conic of which, with respect to the cubic
U(Q), gives the corresponding set of four Burmester points by its residual intersections, other
than P’ and P”, with the Burmester cubic.

19-2. The arbitrary parameter A may be chosen so that the A-line passes also through the
dual Ball point, and then this line plays identical roles in the dual configurations; but it is
not possible for the A-conic to be chosen similarly. For this would imply two intersections of
the Burmester cubic with its dual, elsewhere than at 7, and the absolute points, and there
are no such intersections.

In the collineation between the point X, Y and the fourth cardinal point 2Z,(£,7), the
A-line, L, and the line B<Z, correspond, where B is the Ball point; and it is convenient to
write A = 0, so that these two lines coincide. The corresponding conic is

S={4f(a' —a) x+a' (y+2y") y+4a'}2 4 30" y2(4ax? 4-a'y?) = 0,
where y=a+3¢ and 7y = 3a+da.
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42 G. G. STEWARD ON THE
Then each conic of the polar net of the cubic
U=LS=0

intersects the Burmester cubic in two fixed points, upon the line Z, and in four residual points,
forming a set of Burmester points.
Further, if we write
0, =y(E—F7"),

0y= 802 ) —o/ (o — )2 — 4(f— 1),
w3=2f(a' — ) 0y +ay' v, —aa'ys,

the set of Burmester points, corresponding to 27,(,7), is given by the polar conic of X, Y
with respect to the cubic U, where

aXjw, = o' Y]w, = 200 [w,.
And the line B/, given by wy+a'y? = 0,

is one of the three self-corresponding lines in the collineation between §,7 and X, Y.

20. CERTAIN SPECIAL NETS OF CONICS

For certain values of A the preceding investigation breaks down; because, for such values,
the corresponding net N(A) contains at least one double line, and there is not then any
generating cubic U(1). These cases are of some interest, for they correspond to certain special
configurations of the Burmester points; indeed, the four points are then collinear, and, since
they lie upon a cubic, there must be coincidences amongst them. And then, also, the fourth
cardinal point 27, lies upon the quintic curve 2. We proceed to examine these special
cases here.

We may write, temporarily, A/ in place of A, so that the conic net is

N+’ = 0;
and this net contains a double line if the ratio A/u have any of the four values given by the

following, namely, 4="0

Afp+o' (3¢ +a) [f = 0,
(A/p)? — 4o’ = 0.

(1) If 4 = 0, the corresponding A-line passes through the first cardinal point 27, the node
of the Burmester cubic, and P’, P” coincide there, with parameters 0, co; the double line is
the line &7, o7, taken twice, and the four Burmester points coincide at 27,, the parameters
being 0, 00, 0, 00. The fourth cardinal point &7, is then the point of inflexion, on the line
infinity, of the quintic curve 2. And the Jacobian of the net, and of the cubic, reduces to
three lines, the line %7, B, B being the Ball point, and the line .27, %7, taken twice.

(2) If Au+a' (3¢ +a)/f = 0, the A-line passes through the point @ of §16, upon o7, .27,
and then, although P’, P” are not coincident, the lines QP’, and QP" coincide. The double
line is this line B@, taken twice, and of the four Burmester points, two coincide at B, and the
other two lie one each at the remaining intersections of BQ with the Burmester cubic. The
fourth cardinal point 7, is the point of contact of the tangent 27, B to the quintic 2; and
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the cubic U is the line BQ, taken three times, while the Jacobian of the net is this line BQ
taken twice, together with the line through .27,

(30’ +a) x— 28y = 0.

(3) If (A/u)?—4aa’ = 0, the A-line coincides with one or other of the two tangents BT],
BT,, to the Burmester cubic, from the Ball point upon the curve, so that P’, P” coincide
with T} or T, of parameter ¢’ = ¢” = +4,/(a/o).

We take 7] as corresponding to A/u = +2,/(aa’), and then the double line /; of the net
passes through 7}, and is the harmonic conjugate of 7727, with respect to the line-pair
T1B,T| Q. The cardinal point .27, is at one of the two nodes of the quintic 2, and the four
Burmester points coincide in pairs at the two intersections of /;, other than 7, with the
Burmester cubic. The cubic U reduces to three lines through 7}, of which /; is one; and the
Jacobian of the net is the three lines 7} B, 7;.%, and /.

There is a second case, for the net contains also the line 27, 7] taken twice, the cardinal
point 7, being then the point of ordinary contact of the curve 2 with the line infinity. Here,
the four Burmester points coincide with 27}, having parameters 0, 0, o0, 0.

For the value A/u = —2,/(aa’), we have similar configurations involving the point of
contact 7.

In each of the preceding cases, in which the conic net N contains at least one double line,
the four Burmester points may be collinear; but also they may be collinear, because of
coincidences, when the net does not contain any double line. For, if the fourth cardinal
point 27, fall at one of the four cusps of the quintic curve 2, three of the corresponding
Burmester points coincide, so that there are four further cases, in each of which the Burmester
points are collinear.

21. SOME GENERAL RESULTS

Let one Burmester point, ¢, be fixed arbitrarily, so that the fourth cardinal point 27, lies
upon a fixed line /,; then the conic net N(A), for assigned A, reduces to a conic pencil @, three
of the base points of which lie upon the Burmester cubic. A conic of this pencil has three
‘free’ intersections with the cubic—the three remaining Burmester points—which con-
stitute then a linear series of sets, each of three points, of freedom one. Such a set of three
points, together with two arbitrary and fixed points K(¢,), L(¢) upon the curve, define
a conic, intersecting the cubic in a sixth point ¢’(=af?%,/ac,¢,), which is fixed. The aggregate
of such curves is, in general, a quadratic co! of conics, but since, here, the sixth intersection
¢’ is fixed, we have a conic pencil @’. The three remaining Burmester points appear then as
the free intersections of this pencil @’ with the Burmester cubic, three of the base points of the
pencil being upon the curve.

In particular, if K and L coincide with the circular points, upon the cubic, the pencil
@’ is a system of coaxal circles, as in §16.

As a further specialization, let the arbitrarily assigned Burmester point, ¢,, coincide with
the Ball point &’ ; then the third base point of the pencil @’ is given by ¢’ = a, that s, it coincides
with the real point at infinity upon the Burmester cubic. The system of coaxal circles breaks
up then into the line infinity, containing the points of parameters ¢,, ¢, and a, together with
a pencil of lines passing through the fourth base point of the pencil @', which, in this case,

Vor. 244. A. 6
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is the point @ upon 7,7, where 2(a’+a) &/ Q+1 = 0. Thus the three free Burmester
points are collinear, and we have the general result, due to Miiller, of §16, the special case
of which, for the three-bar mechanism, was given earlier by Tschebycheft.

If the line of the pencil, through @, pass also through the Ball point, the four Burmester
points are collinear, two being at the Ball point.

The result due to Miiller follows also for general positions of K(e;), L(¢); for then, if
¢, = o, the sixth intersection of the pencil @', with the Burmester cubic, is given by
€,6,6 = afi?; thatis, this intersection is collinear with K, L. Thus again, if one Burmester point
coincide with the Ball point, the remaining three Burmester points are collinear, and all lines
so arising pass through a fixed point, the fourth base point @ of the pencil @’.

22. THE p; POINTS

22-1. The position of the fifth cardinal point .27; determines the aggregate of points P_ for
which the radius of curvature p; of the third evolute of the corresponding relative path
vanishes, and, from §9-2, such points lie upon w(3) = 0, a curve of degree eleven. This curve
has only four ‘free’ intersections with the Burmester cubic, the remaining 29 fixed inter-
sections being at the first cardinal point 7, (17), at the Ball point (2), and at the absolute
points (10). Thus, upon the cubic, we have a linear series of sets, each of four points, of
freedom two.

If o7, be given, two such points may be assigned arbitrarily upon the cubic, 27; being
thereby determined, and, in particular, %7, being at F,(X,,Y,), these coincide with the
absolute points provided that 27, be at F(X;, Y;), where

(o —a)* X;— 6043+ 156 (e +a) (52" +a) = 0,
(0 —a)* Y54 6042(a+20") — 150 (¢ +)? =
It is convenient to take F; as origin of co-ordinates (£',7’), for &7, and to write
(0 —a)* (x5 — X;) = 15E", (o' —a)* (y;— ;) = 157",
Then, from §9-3, the point ¢ upon the Burmester cubic is a p; point if
Oy=20fU—c(e"+-fy") +ele(a' —e¢) (€+Fp) +2p(e—a) (FE—en)} = 0,
where U= (e+a) (e4a') (e2+f?).

We refer to the equation O;(e) =0

as the p; quartic; clearly, there is a dual quartic
®§(6) =0,
obtained by the interchange of « and «’. And, unlike the Burmester quartic and its dual,

these two quartics, being unsymmetrical in « and o', are not identical.
22-2. There are four points upon the Burmester cubic, given by

(o —a) et 440’ aed 4 20" a%f? = 0,
at each of which, by proper choice of &7, and 7, the four p; points coincide; then, ¢ being
one of the roots of this equation, ¢ _ 948(1 —aa/f?/e*),
so that 7, lies upon one or other of four lines parallel to 27, 27,, and &7, lies upon a corre-
sponding line, the four lines so arising being parallel to
(o 4+2a) x4+ 30y = 0.
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Also, if one p, point be given by
e(1—§/20f) = o/,
the remaining three are collinear, and all lines so arising pass through a point @3, where
| @ is perpendicular to o7, oZ,, and

F{8an’ +e(2a" —a)} | Q3+ 0a’e = 0.
In particular, if ¢ = o/, that is, the Ball point, then
2(a+o) ft, Qs+’ = 0;
we have, therefore, a property somewhat similar to that given by Miiller for the Burmester
points; but here, owing to the absence of'symmetry in  and o', the point 5 does not coincide
with its dual.
More generally, if one p; point be assigned arbitrarily, the remaining three lie upon one

of a system of coaxal circles.
And the four points are concyclic if 27, lie upon the line

§=2f(a—a’). |
Further, we may regard &7,(£,7) as assigned; then through an arbitrary Z;(£',7") pass
four lines, given by 0O4(&,7') = 0,

enveloping a curve of class four, which may be regarded as a generating curve for the
ps points. In particular, if £ = 0 = y, this curve is given tangentially by
2a(fu+ow) (fu+a'v) (u?+v?) +u*vw = 0.
Again, the four p, points are coresidual with the point ¢’, upon the Burmester cubic, where
¢'(1—=Efoff) = o,
that is, with the Ball point, if § = 0. Then, as in §19-1, we have a system of generating cubics
U, (1), such that the polar net of U;(A) intersects the cubic in two fixed points, collinear with
the point ¢’, and in four ‘free’ intersections, which are sets of p; points.

22-3. The interest attaching to the p; points centres, perhaps, in the possibility of their
coincidences with the Burmester points, as in three-bar displacement; for any such co-
incidence implies that the corresponding relative path has six-point contact with its circle
of curvature. Here we may regard o7 (£, ) as arbitrary; then two of the p; points coincide
with the absolute points provided that 2Z;(£’,7") be given by

& = (2a+a') =3y, o= 3L+ (2a+0a) 7.
We regard this as the standard position of 7, and we write
& =&+, 1 =mn+1";
then the p; quartic takes the simpler form
Os(e; £, 7") =20fU—e(6+2a) (62447) E—¢*(e6"+ /") = 0.
The two quartics ® = 0, ®; = 0 have four roots in common if

£=0, =0, 7'+2wp=0,

that is, if 27, lies upon the line through £, parallel to .27, .%Z,, and .2Z; lies upon the line through

F; parallel to a'x+30y = 0.
Clearly, there are oo! such cases.
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46 G. C. STEWARD ON CARDINAL POINTS IN PLANE KINEMATICS

Further, it is the case that if the two quartics have three roots in common, other than
¢ = 0, the fourth root also is common. For, ® = 0 being the Burmester quartic, we have

2000 — O = 62Q,
where @ is quadratic in the parameter ¢, given by
Q=6+ (20 +£") e+ f(2ay +-PE+1").
And then E=0, & =0, 7"4+2a=0.

In the case of importance, that of three-bar displacement, two of the p; points coincide
respectively with two Burmester points, upon the Burmester cubic; and, if these be given by
the parameters ¢, ¢,, we have

1/ = —(61+6,) /(206 +E") = e16/fi(20n+pE+-1"),
so that §"+&(20+e,+¢,) =0 and fy" = (e 6,—p2) E—200.

It follows that the fifth cardinal point 2Z; coincides with one or other of six points, which lie
by threes upon four straight lines.
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